
iAnnotate: Exploring Multi-User Ink Annotation in Web Browsers

Beryl Plimmer, Samuel Hsiao-Heng Chang, Meghavi Doshi,
 Laura Laycock, Nilanthi Seneviratne

Department of Computer Science
University of Auckland

beryl@cs.auckland.ac.nz, {hcha155| mdos002|llay008| lsen008}@aucklanduni.ac.nz

Abstract
We present iAnnotate, a tool that provides multi-user
digital ink annotation on standard web pages within a
commercial browser. The annotation can be saved,
retrieved and shared with others via a URL. In addition
multiple users’ annotations can be displayed on the same
page. We describe our design goals and the technical
challenges. While realizing annotation on web documents
is difficult because of the dynamic nature of the
documents and the security constraints of web browsers,
our user evaluation suggests that fully realized digital ink
annotation tools would be very valuable.
Keywords: Digital ink, document annotation, web
annotation

1 Introduction
Annotating a document with a pen helps people think and
engage more deeply with the material (Wolfe 2000).
Furthermore annotations can be used to communicate
ideas about the document content with others (Marshall
1997). Increasingly documents are web-based. Yet,
although the computer hardware to annotate documents
(digital pen and touch interfaces) is freely available, there
are few examples of ink annotation functionality in web
browsers.

Digital ink annotation support is available in many
desktop applications such as word processors. However
web browsers do not offer built-in annotation
functionality of any kind. In terms of retrieving and
sharing information, web browsers are probably used
more than desktop applications. The existence of
annotation functionality, enhanced with storing and
sharing, should further increase the convenience offered
by the web.

Web documents and web browsers present particular
challenges that make annotation difficult. First, web
documents are usually dynamic. That is the content is
changing quickly and web documents are designed to
reflow within the available window space. Annotations
derive meaning from their location, therefore robust
location fixing of the annotation within the dynamic
document is required. Second, the web browser is on the
user’s machine and from this machine it interacts with
data from unsecure sources. As such browsers present a

security risk and must have excellent security. The
security of browsers limits the extension points for add-
ins and the ability to mix content between different
servers. Finally, realizing digital ink annotation is
technically quite difficult as text, pictures and annotations
must lie over each other. This usually requires layering of
the interface which can be problematic as accurate
position information of elements on the different layers is
not always available.

Several projects have investigated user annotation of
web pages (e.g. Cadiz, Gupta et al. 2000; Chatti, Sodhi et
al. 2006). However, none of these applications provide a
complete solution. Some lack the flexibility to allow
annotations to adapt to the changes of the underlying
webpage; others do not save the ink or lack support for
window scrolling.

Digital ink, created with a stylus directly onto the
display, simulates real world annotation behaviour by
enabling users to directly draw on web pages. The
interaction is straightforward. However a number of
complex problems are faced from an implementation
perspective. In this project we investigate whether
Silverlight (Microsoft Corporation 2008), a recently
released browser plug-in with digital inking capabilities,
provides sufficient functionality to support freehand
annotation on any web page.

2 Related Work
Current implementations of annotation on the web can be
divided into two types: text based annotation applications
(Wilson ; Kahan, Koivunen et al. 2002; Bottoni, Civica et
al. 2004) and ink based annotation applications
(Ramachandran and Kashi 2003; Chatti, Sodhi et al.
2006). Text based annotation applications allow the user
to annotate web pages using the mouse and keyboard
whereas ink based annotation applications allow the user
to utilize a stylus or touch screen (or mouse) to annotate a
webpage with digital ink. Both approaches need to be
able to capture and display the annotations, store and
retrieve annotations, and finally allow for changes in the
underlying webpage and size of the browser window.

An important aspect of annotation is deciding how to
acquire the annotation from the user. In text based
annotation systems, this entails the user typing the
annotation using a keyboard. In digital ink annotation the
user is able to annotate directly on top of the document,
as if it were paper.

Text based annotation applications generally require
the user to select text, right click the selected text or click
a button to generate a text field to enter the annotation
(Figure 1). This can be unintuitive and also breaks the
thought process behind the annotation. This means that

Copyright (c)2010, Australian Computer Society, Inc. This paper
appeared at the 11th Australasian User Interface Conference (AUIC
2010), Brisbane, Australia, January 2010. Conferences in Research and
Practice in Information Technology, Vol. 106. P. Calder, C. Lutteroth,
Eds. Reproduction for academic, not-for profit purposes permitted
provided

CRPIT Volume 106 - User Interfaces 2010

52

the user’s concentration is on how to insert the annotation
rather than the actual content of the annotation.

Figure 1: Annotating with Annozilla (Wilson)

 Digital ink annotation bypasses this aspect of
annotating because the user is able to directly write on the
webpage. This way the user can concentrate on the
content of the annotation. Although this process can be
achieved via a mouse it is most effective when using a
stylus for input.

Displaying the annotations to the user is as important
as acquisition of the annotation. In a text based annotation
application this usually is achieved by displaying an icon
for the annotation –the user double clicks the icon in
order to view the annotation. Annotation applications that
support digital ink can display the annotation more easily
directly on top of the webpage. For example, uAnnotate
(Chatti, Sodhi et al. 2006) uses a transparent Flash object
so the user is able to view the created annotation as well
as the content of the underlying web page.

However, in both cases it is possible to cover the
content of the document with annotations. This becomes a
problem in digital ink annotations, because the ink is
displayed on top of the content. Therefore functionality to
hide or filter annotations is required. Annotea (Kahan,
Koivunen et al. 2002) allows the user to filter and hide
annotations according to author, server or annotation
type. uAnnotate (Chatti, Sodhi et al. 2006), provides a
link which the user can click to clear all annotations on
the web page.

Annotations derive meaning from their position so it is
important to retain their relative position when the
underlying document changes. Moving the ink to retain
its meaning is called ink annotation reflow. Brush et al.
(2001) in a study regarding the repositioning of
annotations concluded that users prefer the annotation to
be anchored onto specific key words. For example if the
document is changed and only a small amount of the
annotated text is remaining, the user expects the
remaining text to be still annotated.

uAnnotate (Chatti, Sodhi et al. 2006) approaches the
problem of repositioning when scrolling by making the
ink overlay as large as the webpage. This means that
when the user creates an annotation and scrolls down the
page the annotation scrolls with the content. If the user
resizes the window then the overlay as well as the content
resizes to fit the window.

When the underlying web page is changed via
insertion or deletion, the annotation application should
recognize this and display accordingly. In the Avaya
prototype (Ramachandran and Kashi 2003) and
uAnnotate (Chatti, Sodhi et al. 2006) if the underlying
content is modified, the annotation is not displayed. This
is acceptable if the keywords for anchoring the annotation
have been deleted. However if there is an insertion before
the keywords the annotation application should still
display the annotation. Annotea (Kahan, Koivunen et al.
2002) does not display orphaned annotations (annotations
where the keywords have been deleted) on the web page
however they will display it in a list view where all
annotations associated with the page are displayed.
Current approaches provide approximate reflow in
common situations. The dynamic nature of web
documents and browsers makes robust annotation reflow
a difficult problem.

The transient nature of web pages means that the
annotation needs to be anchored properly in order to
allow annotation reflow. In order to generate the
anchoring points Wang and Raghupathy (2007) describe
methods in which the anchoring position can be
determined by the context of the annotation. This means
that the annotation anchoring position should be
determined by the type, as well as the position of the
annotation. Another approach to attaching annotations to
the underlying document is described by Priest and
Plimmer (2006). This method uses a linker, which is the
first stroke of the annotation. The linker stroke can either
be a circle stroke or a line stroke identifying the
document position to which the annotation is attached.

In order to create an effective web annotation
application, annotations need to be encapsulated and
stored efficiently so that they may be reused at a later
date. Annotations are usually encapsulated either using
the resource description framework (RDF) or extensible
mark-up language (XML) schema. The common
annotation framework (Bargeron and Moscovich 2003)
and the Avaya prototype (Ramachandran and Kashi 2003)
both use a customized XML schema to encapsulate
attributes of annotation such as the anchors for the
annotation, the annotating document and the annotation
content. Annotea (Kahan, Koivunen et al. 2002) uses the
RDF framework to create classes of annotations that can
give fine grained detail of annotation types. In either case,
the annotation can be formed so that it is self-contained.
This means that the annotation can be stored on a
different server than the web pages. Thus it promotes
portability of annotations, and also provides an approach
to annotate read-only documents (Bargeron and
Moscovich 2003).

Most web annotation applications prefer to
encapsulate annotations via XML and save these files in
servers (Kahan, Koivunen et al. 2002; Ramachandran and
Kashi 2003; Bottoni, Civica et al. 2004; Chatti, Sodhi et
al. 2006). There are number of advantages in storing
annotations in this manner: all annotations are hosted in
one place thus preventing users from loading annotations
to the wrong web page. Annotea (Kahan, Koivunen et al.
2002) and MADCOW (Bottoni, Civica et al. 2004) take
advantage of this, incorporating multiple servers in their
architecture. However, a drawback of this approach is

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

53

that each server uses an API to retrieve and store
annotations. This means third parties cannot extend the
implementation unless they are provided with this API.

As an alternative Denoue and Vignollet (2001)
propose that annotations should be stored within the URL
of the webpage. As well as being self-contained, it avoids
the use of a server altogether. However this approach to
storing would make ink annotation storage difficult due to
browser limitations such as the character limit for the
URL. Also, it does mean that users are unable to annotate
on third party web pages due to restricted domain access.

Another option is to store the annotations locally.
uAnnotate (Chatti, Sodhi et al. 2006) uses Flash’s Local
Shared Objects to store information about its annotations.
The main drawback of this approach is that annotations
are restricted to one computer and one user.

If the user wishes to view annotations which were
saved at a previous date, he or she could import this
annotation onto the same webpage. For example in
uAnnotate (Chatti, Sodhi et al. 2006) it is possible to
export the created annotations into an XML file and
reload this file to a web page at a later date. In this case
the annotation application should check whether the URL
of the annotating document and the URL of the web page
are the same. If the annotation is saved onto a server, this
server should prevent the user from loading an annotation
which was not created for that particular web page.

Some of the constraints of existing digital ink
annotation are that the annotation pane is restricted to the
current window (Chatti, Sodhi et al. 2006), the annotation
can be loaded onto any URL (Chatti, Sodhi et al. 2006),
and saving is local only or manual from the user’s
clipboard (Chatti, Sodhi et al. 2006). Reflow is either not
supported (Chatti, Sodhi et al. 2006) or limited
(Ramachandran and Kashi 2003). Annozilla (Wilson)
supports multiple text annotations but only one can be
viewed at a time: we are not aware of any digital ink
annotation tools that can show multiple users’ annotations
at the same time.

3 Design Goals
Our vision for this project is a web space where a
document can be annotated with digital ink by any
number of people. The annotations may have different
purposes: for example they may be a teacher’s or
student’s comments on course notes, a study group’s
shared considerations of a text, or an extended family’s
shared annotations on a family calendar. Potentially, they
could contribute to social discourse where an initial
document acts as the trigger for a discussion. Realizing
this vision requires us to explore a number of technical
and design issues.

Many-to-many annotations raise several research
questions: how can we appropriately visualize, index,
store, search and filter the annotation data? Imagine a
web document that 10, 20, or 100 people have annotated.
Simply displaying the annotations over the document is
unlikely to be useful or usable. However seeing ‘hot
spots’ (or ‘aggregated’ annotations), points in the
document that a number of people have annotated, is
likely to be useful to find foci of attention. Additionally
filtering the annotations to see selected users’ (e.g. the
boss/teacher) or groups’ (friends/ colleagues) annotations

or those on a particular theme or topic are also likely be
useful. If the annotations are a conduit for social
discussion then being able to retrieve the annotations with
appropriate spatial and temporal information is also
crucial. One can imagine converting annotations into a
time series so that a viewer can replay the conversation
(or the time series could simply be used as a mechanism
to see individual annotations in a hotspot).

In this first stage of the project we explore the
technical issues of realizing multiple, shareable digital ink
annotations on any web page (not just specially designed
pages that incorporate annotation) and basic usability
considerations for digital ink web annotation.

4 Our Approach
As there are well-documented limitations to current
approaches such as Flash, in this project we have
investigated Silverlight. Microsoft Silverlight (2008) is a
cross browser and cross platform plug-in which allows
developers to create rich internet applications. Of
particular interest for this project is that it exposes an API
to the .NET Framework that has excellent support for
digital ink.

From a software architecture perspective there are two
parts to realizing the annotation capability. The first is the
core annotation framework, which provides ‘on
document’ functionality of inking, anchoring and
reflowing ink, and general ink editing support. The
second is the browser extension for the instantiation of
the ink overlay, and saving and loading of ink.

4.1 First Prototype
Our first prototype (Figure 2) used Silverlight 2 beta 2,
released in June 2008. The core annotation framework
provides functionality for the editing, anchoring and
reflow of the digital ink. The browser plug-in provides a
toolbar with start and stop annotating buttons and
functionality to inject Silverlight into a page’s HTML.

4.1.1 Core Annotation Framework
The core annotation framework (CAF) of iAnnotate was
built using Silverlight, JavaScript, XML and ASMX web
services. In order to capture the annotation the CAF uses
a Silverlight object. When the page is loaded this object is
overlaid on the webpage. The Silverlight object is
transparent, except the buttons, which allow the user to
interact with the application.

The Silverlight object contains our InkPresenter
control, which renders digital ink strokes using the
movement of the stylus. The InkPresenter can also create
strokes programmatically thus it is used to display
previously saved annotations. When the user begins an
annotation the Silverlight object calls JavaScript methods
to anchor the annotation to the underlying webpage.

To anchor annotations effectively the individual
strokes must be grouped into annotations. Two
approaches were considered. The first serializes the ink
strokes into a XML string and sends this to the server
where they can be recognized and grouped into different
annotations. However, this method may take a
considerable amount of time as the strokes need to make
a round-trip to the server.

CRPIT Volume 106 - User Interfaces 2010

54

Figure 2: Prototype one

The second method uses a bounding box to group ink

strokes into annotations. The bounding box implemented
is similar to that used by Priest and Plimmer (2006).

Figure 3: Bounding box in CAF

This bounding box is first displayed to the user when
they start an annotation. As seen in Figure 3 all strokes
(red ink) within the bounding box (blue rectangle) are
classified as one annotation. If the user starts an ink
stroke within the bounding box and reaches towards any
edge of the bounding box the bounding box will expand
in that direction to allow the user to carry on annotating.

The algorithm for grouping ink strokes checks if the
first point of a new stroke is inside the bounding box of
the current annotation. If it is the stroke is added to that
annotation. If not, a new Annotation object is created and
a bounding box created to enclose it. This algorithm can
potentially group two separate annotations together. For
example if a user circles one word in a sentence and tries
to underline another word which is just within the
bounding box, then the bounding box would expand to
allow this stroke to be in the same annotation.

Once the ink strokes are grouped into annotations,
anchor locations on the underlying webpage are
computed. The position of the first point of the first
stroke is used to identify the closest HTML element. The
standard JavaScript method ‘elementFromPoint’ returns
an HTML element given a point. However it only returns
the first element enclosing the point. Thus when the CAF
is on a webpage it always returns the Silverlight object
and not the content elements.

We developed a JavaScript algorithm to determine the
closest HTML element. This algorithm traverses through
the Document Object Model (DOM) tree to find the
vertically closest HTML element in the document’s body
section. The algorithm matches the vertical position of the
annotation to the document because the distance between

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

55

the annotation and the top edge of the document describes
the section that the annotation belongs to most accurately.

The main limitation of this algorithm is that if there
are a large number of elements on the webpage it will
iterate through all of the elements. This may delay the
rendering of the first stroke. Another constraint is that the
annotation is anchored to an element; JavaScript does not
allow fine-grained control over the text in a webpage.
However, attaching the annotation to the element has the
advantage of supporting anchoring annotations to images
as well as text elements.

Annotation reflow happens on two occasions: when
the browser window resizes and when the underlying
content of the webpage is changed. The algorithm
processes each annotation by first locating its anchoring
element. If it is an element other than the document
element it computes the x and y offset of the anchoring
element from the top of the page. This offset is used to
move the annotation. In the case when the anchoring
element is the document element of the webpage the ink
annotation is rendered at the original position. If the
anchoring element is not found the annotation is an
orphan and is not displayed.

Our reflow algorithm does not properly take account
of the horizontal position of an annotation. If the browser
window is resized then the annotations can potentially be
on the wrong place. More sophisticated reflow is
necessary for a completely satisfactory system.

4.1.2 Plug-in
Our goal with the plug in is to extend a browser with a
toolbar to provide the necessary interaction buttons (‘Start
Annotating’ etc.). Silverlight works best with Microsoft
Internet Explorer (IE), so as a proof of concept we
concentrated our efforts on IE. iAnnotate’s plug-in
separates into two main sections: the Browser Helper
Object, and the iAnnotate toolbar

An Internet Explorer extension can be created by
using the Browser Helper Object (BHO). BHO allows the
developers to access Component Object Model (COM)
components that load each time the browser starts up. The
BHO implements the IObjectWithSite interface to
establish a COM-based communication channel to obtain
the browser’s events.

 The iAnnotate toolbar of the extension inherits the
BHO. The BHO adds the band on which the buttons can
be placed. iAnnotate adds the “Start Annotating” and
“Stop Annotating” button in the band of the toolbar
displayed on the browser, as shown in Figure 2.

On ‘start annotating’ the plug-in injects a Silverlight
object into the webpage. Our first attempt injected the
Silverlight object into the browsing pane of the browser:
the area in which the webpage is displayed. While we

could add the Silverlight object, the events were not fully
exposed. Thus we could not progress with this approach.

The second approach injected a Silverlight object into
every webpage the user wishes to annotate. To achieve
this, the Microsoft HTML Object Library was used. This
“mshtml” reference allowed access to the webpage’s
HTML through the Component Object Model (COM).
This access was obtained by creating an HTML document
using the HTMLDocument class and casting the
Browser’s document into the HTMLDocument type.
When injecting HTML using the mshtml
“insertAdjacentHTML(string where, string HTML)”
method, the injection of a reference to an external
JavaScript file does not work. We attributed this to
security. However injection of inline JavaScript was
effective.

We converted all of the JavaScript code into one string
and added it using the “execScript(string code, string
language)” method. Thus a clean architecture could be
obtained and the extension could successfully inject the
Silverlight object into any webpage the user would wish
to annotate. There were additional problems with
interfacing between the browser and server for saving and
retrieving annotations that we had not fully resolved
before Silverlight 2.0 was released.

Using this version of iAnnotate we undertook an
informal usability study, which is reported in the
evaluation section.

4.2 Second Prototype
The upgrade to Silverlight 2.0 (release version) in
November 2008 caused significant problems with our
plug-in architecture. Unfortunately the release version of
Silverlight 2 disallowed applications to be retrieved from
outside the site’s domain. As a result, although we could
still insert code into web pages and call Silverlight from
the page, because the domain of that page is different
from the annotation server it will not respond.

After exploring various avenues we decided the only
viable approach was an IFrame design. Similar to the
previous approach, we have layers. The top layer is the
annotation panel made with Silverlight 2.0, which allows
the creation of digital ink. The middle layer is the IFrame,
which displays the content of some webpage ready to be
annotated. These layers sit on a HTML page, which is
located server side, which means the Silverlight can be
loaded without security issues.

 Annotations can be saved and retrieved from a simple
MySQL database on the server. Each annotation is tagged
with the user’s ID, URL and time data. This allows
annotations to be shared and multiple annotations of the
same page displayed.

CRPIT Volume 106 - User Interfaces 2010

56

Figure 4: Prototype two

The user experience with this implementation is

different. The user must login to the annotation website
so that their annotations can be identified. In order to
annotate a page the user must first put the URL in the
textbox at the top of the page and click ‘go’ to load the
page (Figure 4). They can then ink, highlight and erase
using the buttons at the bottom of the window. On saving
each annotation is automatically allocated a unique key
and a URL is generated for the key (annotation URL with
the key appended) (Figure 5). The annotation can be
retrieved using the key or the URL. Using this generated
URL the web page and annotation can be retrieved
without logging in. Multiple annotations for the one page
can be loaded by entering the key or selecting the
annotation codes from the list and clicking the ‘load’
button (Figure 6). Annotations of a different page can be
loaded with the page from the open list (Figure 7). This is
a two-step process; first the page is loaded from its
original location (we do not copy the page content to our
server) then the annotation is rendered on the page using
the CAF.

Figure 5: Save URL

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

57

Figure 6: Load list

Figure 7: Open list

The disadvantage of this approach is that the user has
to copy the URL of a page they want to annotate into the
field on the annotation website. The annotation website
then reloads the webpage into the IFrame. This is a less
natural interaction paradigm than we would like.
Furthermore it is difficult to calculate the size of a
webpage before it is loaded consequently we have created
a fixed (large) IFrame that can accommodate most
standard web pages (there are some dynamic technologies
such as AJAX that do not work). This effectively disables
normal window resizing functionality as the IFrame is of
fixed width. One benefit from fixing the width is that ink
reflow is much less of an issue. Another advantage of this
approach is that the user does not need to install a plug-in
so the functionality is more freely available.

5 Evaluation
We have conducted user evaluations on both versions of
iAnnotate. The usability study on the first prototype
evaluated three main aspects of the system: the user
interface, the appeal of digital ink annotation in a web
browser and the users’ reactions to annotation reflow. The
usability of the second prototype focused on the sharing
of an annotation.

5.1 Prototype One
The study was conducted with eight student participants
on a Tablet PC with stylus input. The participants had
used a stylus at least once and were familiar with how a
Tablet PC works. Most of the participants digitally
annotated paper documents at least “sometimes” but “not
often”.

The study consisted of two main parts. The first part
was to check the usability of creating annotations. The
participants were provided with a paragraph in a wiki
which had several spelling mistakes. They were asked to
mark-up the corrections with ink annotations (Figure 8
top). Once this task was accomplished, the participants
were asked to rate the system for its user interaction and
functionality.

The second part was to examine the ink reflow. The
study conductor edited the wiki in front of the participant
so they could notice the changes. This included moving
the paragraphs from one point to another. The webpage is
then refreshed and the annotations are reloaded, with the
ink reflowed (Figure 8 bottom). The participants were
requested to rate the system again after seeing this new
functionality and asked what they thought of the reflow of
the annotation. We also used this data to measure the
accuracy of the ink reflow.

Figure 8: Prototype one user’s annotations before and

after reflow

The key results showed that the participants found
iAnnotate very easy and intuitive to use (4.71 on a 5 point
Likert scale). The average accuracy of iAnnotate’s reflow
functionality is approximately 73%, ranging from 58.33%
to 83.33%. This affected the appeal of annotation on the
web, which dropped from 4.71 after the first task to 4.42.
Some participants mentioned that if they knew how the
anchoring algorithm worked, they would be happy to
adapt their style of annotating to increase the accuracy of
the reflow.

5.2 Prototype Two
The evaluation of the second prototype focused on its
new functionality: saving, sending and loading
annotations and displaying multiple people’s annotations
on the one page. The first task was to annotate a web page
as an instruction guide to the basics of website layout for
an 8 year old (Figure 4). The second was collecting menu
choices from friends for a shared meal (Figure 9); we had

CRPIT Volume 106 - User Interfaces 2010

58

pre-prepared four annotations of an online menu site for
this.

Figure 9: Multiple user’s annotations of a web page

The 10 participants were all students (aged 19-26);
half were computer science/software engineering majors
and the other half were from various other disciplines.
The gender split was 50:50 and pen-computing
experience varied from a lot (4), some (4), never (2).
Each participant was given a short demonstration of the
main functionality before they attempted the tasks.

Unlike the first prototype, this prototype exists within
the browser pane. The users had to first enter the URL of
the web page they wanted to annotate into the text box
and press ‘load’. Two participants initially put the URL
into the browser address bar rather than the iAnnotate
textbox and some participants looked for functionality
such as loading or saving annotations within the
webpage.

The basic functionality of iAnnotate proved easy and,
for the most part, intuitive for users (mean 3.6, median 4
on 5 point Likert scale). The save, load and browse
buttons were easily located by the majority of users in the
study. The participants, even those who had not used a
Tablet PC before, all found annotating the webpage to be
easy.

The method for saving is likely to cause problems. The
user has no choice of what to call the annotation; a
random ten character code is assigned when the user
saves an annotation. Most of the participants could not
recall a code they had saved only minutes before and had
to look it up. One participant commented “good but
annotation codes were inconvenient”. Another suggested
thumbnails as an alternative.

A few people interpreted the ‘Load’ functionality to be
equivalent to the ‘Open’ functionality. ‘Load’ opens
annotations that have been created on the web page
currently open and it places them on top of existing
annotations. ‘Open’ opens any annotation created by the
user and its associated webpage in a new window. There
needs to be a clearer distinction between ‘Open’ and
‘Load’.

We experienced a technical problem during the study
with some larger annotations not always loading
completely. The program gave no indication of failure.

We believe that this was because of time-outs occurring
during the round-trip to the server.

A small inconsistency identified was that while a user
can input text into the URL box and press Enter to load
the corresponding URL, this functionality is not
duplicated in the behaviour of the Load tool. When a user
inputs an annotation code into the Load box and presses
enter, the page is cleared of any previously saved
annotations. This may cause loss of data when the page is
refreshed which would cause more work for the user and
unnecessary frustration.

Most of the usability issues uncovered are not
associated with the technical challenges of web
annotation and are easy to correct.

The overall impressions of the tool were positive, with
most users appreciating the potential usefulness of the
product while understanding that this system still needs
more development. Feedback included comments such as
“fun tool to use” and “good application and has a lot of
promise and use”.

6 Discussion
In this project our goal was to provide a tool to facilitate
digital ink annotation ‘anywhere’ on ‘any’ webpage. To
this end we have investigated the functionality provided
by Microsoft Silverlight as it is a new browser add-in that
supports digital inking.

We encountered numerous technical issues, which are
not dissimilar to issues previously reported when trying to
extend existing proprietary tools (Dietrich, Hosking et al.
2007; Chang, Chen et al. 2008). Nevertheless we had
some success with the two prototypes. The first prototype
supported inking and basic ink reflow. While the second
added saving, loading and display of multiple users’
annotations.

The users in both evaluations studies enjoyed the
experience and felt that such functionality would be
useful. The experience was less compelling with the
second prototype as it was a less natural interaction
experience with the users having to paste the URL of the
page they want to annotate into the annotation site before
they could ink, save, send, etc. To partially address this
problem we have coded a small JavaScript hyperlink that
can reside in the user’s favourites that will take the user
directly to the annotation server and display the current
web page.

While Silverlight offers appropriate base classes for
digital ink support, the manner of integration into IE is
insufficient for our purposes. The way forward in this
respect may be an open source browser so that the base
code can be modified as required. It may also be better to
use independent inking resources as it is quite probable
that proprietary ones have other extensibility issues.

Our goal of being able to annotate any website cannot
be fully realized with the current approach. Sites where
the content is very dynamic (scrolling adverts for
example) are likely to be different on a minute-by-minute
basis. Also, there are other web technologies (such as
Flash) that can result in multiple pages having the same
URL. In this case our recorded URL may not take the
user to the appropriate page. To retain information in
these cases a copy of the page must be captured – this has
obvious consequences for server space etc.

Proc. 11th Australasian User Interface Conference (AUIC2010), Brisbane, Australia

59

Digital ink reflow remains a difficult problem that has
not yet been fully solved. The DOM model of HTML
makes this more challenging with these documents.
However we expect that as more digital ink annotation
research is conducted more intelligent ink reflow
approaches will be developed.

7 Conclusions
In this project we have explored general digital ink
annotation support in web browsers. Our technology
choice was Silverlight and IE. We developed two
prototypes, both of which had promising features, but
neither of which was a complete solution. To make more
progress from a technical perspective requires a change in
the browser API or the use of an open source browser. In
spite of the technical challenges our usability studies
suggest that digital ink annotation of web documents is
something that would be useful.

8 Acknowledgements
We thank Microsoft Research Asia for funding this
project.

9 References

Bargeron, D. and T. Moscovich (2003). Reflowing digital

ink annotations. Chi03, Ft Lauderdale, 385 -
393, ACM.

Bottoni, P., R. Civica, et al. (2004). MADCOW: a
multimedia digital annotation system. AVI'04,
Gallipoli, Italy, 55-62, ACM.

Brush, A. B., D. Bargeron, et al. (2001). Robust
annotation positioning in digital documents.
Sigchi'01, Seattle, WA, 285-292, ACM.

Cadiz, J., A. Gupta, et al. (2000). Using Web annotations
for asynchronous collaboration around
documents. CSCW, Philadelphia, Pennsylvania,
309-318, ACM.

Chang, S. H.-H., X. Chen, et al. (2008). Issues of
Extending the User Interface of Integrated

Development Environments. Chinz, Wellington, ACM.
Chatti, M. A., T. Sodhi, et al. (2006). u-Annotate: An

Application for User-Driven Freeform Digital
Ink Annotation of E-Learning Content.
ICALT'06, Kerkrade, The Netherlands, 1039-
1043, IEEE.

Denoue, L. and L. Vignollet (2001). Annotations in the
wild. SAAKM workshop of Semantic
Authoring.

Dietrich, J., J. G. Hosking, et al. (2007). A Formal
Contract Language for Plugin-based Software
Engineering. iceccs, 175-184.

Kahan, J., M.-R. Koivunen, et al. (2002). "Annotea: an
open RDF infrastructure for shared web
annotations." Computer Networks 39: 589-608.

Marshall, C. (1997). Annotation: from paper books to the
digital library. DL, Philadelphia, 131-140,
ACM.

Microsoft Corporation. (2008). "Sliverlight 2.0."
Retrieved 20 May 2008, from
http://www.microsoft.com/.

Priest, R. and B. Plimmer (2006). RCA: Experiences with
an IDE Annotation Tool. CHINZ, Christchurch,
53-61, ACM.

Ramachandran, S. and R. Kashi (2003). An architecture
for ink annotations on web documents. 17th
International Conference on Document Analysis
and Recognition, 256-260, IEEE Computer
Society.

Wang, X. and S. Raghupathy (2007). Ink annotations and
their anchoring in hetergeneous digital
documents. ICDAR, 163-167, IEEE Xplore.

Wilson, M. "Annozilla (Annotea on Mozilla)."
Retrieved June 2009, from
http://annozilla.mozdev.org/.

Wolfe, J. L. (2000). Effects of annotations on student
readers and writers. Digital Libraries, San
Antonio, TX, 19-26, ACM.

CRPIT Volume 106 - User Interfaces 2010

60

